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Abstract. The path integral of an oscillator with memory occurring in the theory of an elec- 
tron gas in a random potential is evaluated exactly. The analysis simply reduces the problem 
to that of averaging the propagator of a forced harmonic oscillator using a gaussian proba- 
bility for the external force. 

1. Introduction 

Bezak (1970) in connection with a path integral theory of an electron gas in a random 
potential was faced with the evaluation of the following path integral : 

where 9 [ x ( u ) ]  is the usual Feynman path differential measure (when working with 
imaginary time ph/i; p = l/kT) and S[x (u ) ]  is the action for an oscillator with memory 
given by : 

As is well known in the case of quadratic action functionals, as at present, the propa- 
gator takes the form : 

(1.3) 

where S ,  is the action of an electron along the classical path from x(0) = xo to x(ph) = x, 
and O(p) is a function independent of the spatial coordinates but fully determined by the 
parameter f l  = l/kT, Bezak (1970) obtained exactly the exponential expression of (1.3) 
but approximated the pre-exponential factor @(p) following a rather complicated way. 
In a follow-up paper (Bezhk 1971), entirely devoted to the evaluation of @(P), he gave an 
improved version of @(p) in terms of an infinite product of factors, implicitly defined 
through the roots of a transcendental equation. This he further approximated by a 
simpler expression but for a certain range of the dimensionless parameter Phi l .  

The purpose of our paper is to present a direct and physical method which leads to a 
simple and exact result for the propagator (1.1) valid for the whole range of the parameter 
phn. 

183 



184 G J Papadopoulos 

2. The evaluation 

As a first step towards our evaluation we express the action (1.2) as:  

m 
S[x(u)]  = 1, im(x2(u) + Q2x2(u)) du - 

Inserting (2.1) into (1.1) our path integral takes the form: 

x ( p f i )  = s 

9 [ x ( u ) ]  exp( -: Jopfi ~m(i2(u)+Q2x2(u)) du 

The awkward part of the path integral (2.2) is the last exponential functional which in- 
volves off-diagonal terms in full. However, the difficulty can be overcome as follows : we 
generate this functional through averaging a linear exponential functional, involving an 
auxiliary random force findependent of ph, using an appropriate gaussian distribution 
for the random force. 

More explicitly we have : 

Next we insert (2.3) into (2.2) and obtain 

(2.4) 

where 

Go(x, / 4xo?O; f )  
X(8fi) = x 

X(0)  = xi3 

= 1 9 [ x ( u ) ]  exp (+mx’(u)+ ) m Q 2 x 2 ( u ) + f .  x(u))  du 

Now (2.5) is the propagator of the Bloch equation for a forced harmonic oscillator and 
this can be found in the literature (see eg Papadopoulos 1969). With a constant external 
forcefwe have : 

Gob, Plxo.0; f) 

= ( dl ) 3’2 exp [ -@ [coth(iphQ)(x -x0)’ + tanh(@hQ) 2nh sinh(phR) 4h 

1 tanh($hQ) P 
x(x+x0)’]-- tanh(i/3hQ)(x+xo). f- hQ 

where in (2.6) we have written the term in the large square brackets in the exponential 
argument in a form convenient for the present evaluation. 
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Combining (2.4) and (2.6) and performing the integration over the auxiliary random 
force f we find : 

This is the required result ; exact and in compact form. 
As a final remark the present method provides the interpretation that the behaviour 

of a quantum memory oscillator equals the average behaviour of an assembly of ex- 
ternally forced quantum oscillators for which the external forces obey a gaussian 
distribution of zero mean and variance 2mR’kT. 
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